Dynamic Vortex Phases in Superconductors with Correlated Disorder
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The nature of driven motion of a vortex solid in the presence of a planar pinning defect is investigated
by large-scale simulations based on the time-dependent Ginzburg-Landau equations. Three dynamic
phases are identified and characterized by their relative positional and velocity correlations.

PACs numbers: 74.60.Ge

Vortices in superconductors are a well-defined system
of elastic lines or points interacting by electromagnetic
and hydrodynamic forces, which can be driven through a
field of pinning sites by an applied current. The dynamic
response of the vortices controls most transport proper-
ties of superconductors and displays remarkable variety,
including nonlinear effects, steady-state and avalanche
dynamics, and thresholds for the onset of motion. A
basic understanding of these dynamics is of fundamen-
tal interest and is an essential step in controlling vortex
motion in technical applications.

Vortex motion may be classified generally as elastic or
plastic. In elastic motion, each vortex keeps the same
neighbors, while in plastic motion the neighbors change.
Plastic vortex flow has been identified in molecular dy-
namics simulations [1] and in pioneering transport exper-
iments on NbSes [2]. Plastic-to-elastic dynamic transi-
tions have been predicted analytically [3] and explored in
neutron scattering experiments [4,5] and transport mea-
surements [6,7]. In this paper, we use large-scale simula-
tions of the time-dependent Ginzburg-Landau equations
to investigate the internal structure of elastic and plas-
tic motion, following the individual motions of hundreds
of vortices in the presence of a controlled driving force
and a planar pinning defect. We find two distinct plastic
phases and an elastic phase, each with different internal
symmetry. We identify and compare the characteristic
features of each dynamic phase and the physical condi-
tions favoring each.

The simulations are based on the time-dependent
Ginzburg-Landau equations [8,9],
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where 1 1s the complex order parameter, A the vector
potential, and £ the Helmholtz free-energy density; the
other symbols have their usual meaning. Computational
details have been described in [10].

The simulated sample was a rectangular cylinder, in-
finitely long and homogeneous in the field direction. The

sample had two parallel free surfaces defined by the
boundary condition J; -n = 0 (J; is the supercurrent
density). A transport current was induced by a field dif-
ferential between the free surfaces. Periodic boundary
conditions were applied along the current direction to
avoid edge effects. The sample measured 32X (between
the free surfaces) by 48 (in the current direction), where
A is the magnetic penetration depth. The computational
grid consisted of 256 x 384 points, which gave two grid
points per coherence length & when the Ginzburg-Landau
parameter £ = 4 (k = A/€). The absence of thermal fluc-
tuations restricts our results to the vortex solid.

Correlated disorder was introduced within a slab of
thickness 2¢ oriented parallel to the field direction and
45° to the free surfaces, a geometry common for twin
boundaries in YBCO. The disorder was modeled by a
reduction of the condensation energy to a mean value of
56% of the bulk value, accompanied by Gaussian spatial
fluctuations with a standard deviation of 25% of the bulk
value. The fluctuations in condensation energy provided
resistance to vortex motion within the twin boundary, as
observed experimentally [11]. There was no disorder in
the bulk of the sample outside the slab.

Simulations were run for three transport currents rep-
resenting approximately 2% (weak current), 4% (inter-
mediate current), and 8% (strong current) of the depair-
ing current. The calculated quantities ¥ and A on the
computational grid at each time step provided a record
of the evolution of the system. Each simulation required
approximately 100 hours on 16 processors of the IBM
Scalable POWERparallel (SP) computational system at
Argonne National Laboratory. We report only the behav-
ior in the steady-state portion of the time window, which
was characterized by the requirement that the number of
vortices in the sample vary by less than 1%.

Figure 1(a) shows the Delaunay triangulation of the
positions of the vortices at weak current for a typical
time step. There is strong spatial correlation among the
moving vortices. The vortices accommodate the twin
boundary by making its orientation a close-packed di-
rection. This imposed orientation extends over a long
range, up to the dimensions of the simulated sample.
However, it competes with another orientation imposed



by the free surfaces, which are also energetically favor-
able close-packed directions [12]. The 15° misorientation
between these two directions produces some of the de-
fects in the vortex lattice, indicated by open and filled
circles in Fig. 1. Additional defects in the form of dis-
locations appear on the twin boundary to accommodate
the incommensurability of the vortex densities there and
in the bulk.

Figure 2(a) shows the vortex trajectories at weak cur-
rent. The motion of the vortices is strongly influenced
by the surface barrier arising from the boundary condi-
tion Jg - n = 0. For a homogeneous boundary, the criti-
cal Lorentz force needed to overcome the surface barrier
has been calculated analytically and confirmed in sim-
ulations [13]. The twin boundary perturbs the surface
barrier locally where the two meet, creating a favorable
entry point for vortices.

The vortex motion at weak current is plastic, as indi-
cated by the irregular velocity profile over the sample. A
comparison of Figs. 1(a) and 2(a) shows that the motion
is correlated with the location of the defects. Detailed
examination of successive time steps reveals that vortex
motion at the twin boundary occurs via sliding of dislo-
cations. There is significant correlation in the velocities,
with a correlation length extending up to approximately
four vortex spacings above the twin boundary. Corre-
lated regions are separated by discontinuities in the mag-
nitude and direction of the velocity. While magnitude
discontinuities might be expected, as the vortices slide
past each other, direction discontinuities as large as 60°
(which occur at the intersection of the twin boundary
and the left free boundary) are surprising at first sight.
At weak current, the pinning forces dominate the driving
Lorentz force, and the vortices on the twin boundary are
immobilized. The boundary presents an impenetrable
barrier to vortex motion. The vortices respond by mov-
ing predominantly parallel to the twin boundary, even at
distant points [14].

A key feature of the plastic motion at weak current is
revealed in Fig. 2(a): The velocity directions are primar-
ily along the close-packed directions. The latter define
the sliding planes for dislocations. This restriction has a
significant implication for the symmetry of the dynamic
state: Orientational order is preserved. This feature is
examined quantitatively below.

The principle of motion along close-packed directions
explains the velocity direction discontinuities in Fig. 2(a).
In the upper part of the sample, the twin boundary blocks
two of the three close-packed directions, leaving only the
parallel direction available for motion. Because orien-
tational order is preserved over long distances, the twin
boundary guidance operates throughout the sample. Just
below the left end of the twin boundary, the barrier ef-
fect is absent, and all three close-packed directions are
available for motion. The vortices choose to move along
the direction closest to the driving Lorentz force. Thus,

the velocity direction discontinuity is an exchange of one
close-packed direction for a more favorable one.

Figure 2(b) shows two important changes in the char-
acter of the vortex motion at intermediate current. First,
near the twin boundary, the trajectories are much more
disorganized than at weak current, and neither the re-
striction of motion to a few directions nor the correla-
tion between neighboring velocities can be seen. The
disorder in the vortex trajectories is matched by disor-
der in the vortex positions shown in Fig. 1(b). Near the
twin boundary, there are many defects, and no universal
close-packed direction can be identified. This uncorre-
lated plastic motion is in sharp contrast to the correlated
plastic motion at weak current.

The physical origin of uncorrelated plastic motion is
the breakdown of the extended nature of the twin bound-
ary. At intermediate current, the boundary is penetrated
at random positions along its length, depending on the
relative strength of the Lorentz force and the local pin-
ning force. This random penetration precludes the es-
tablishment of a universal close-packed direction for the
vortices and upsets the associated induced orientation
and velocity correlation.

The second change at intermediate current is the tran-
sition from plastic to elastic motion, which has occurred
far from the twin boundary. The lattice structure shown
in Fig. 1(b) is nearly perfect there. Pinning is absent,
and the Lorentz force 1s dominant. The vortices move
nearly uniformly in the direction of the driving Lorentz
force at approximately equal velocities.

At strong current, the Lorentz force overwhelms the
twin boundary pinning, and the motion is elastic every-
where. Figure 2(c) shows that most trajectories suffer
only a slight perturbation at the twin boundary.

The orientational order in the dynamic states is ex-
amined in Fig. 3, which shows the angular distribution
of the bonds connecting neighboring vortices, and in Ta-
ble 1, which shows the hexatic bond-orientational order
parameter <e!%?> (# is the bond angle). All bonds be-
tween neighboring vortices at the last time step in the
simulation have been included. For reference, Table 1
also shows the order parameter for simulations on the
same sample without a twin boundary. Data for a region
centered on the twin boundary, extending 5.625X (ap-
proximately three lattice spacings at intermediate cur-
rent) on either side, and for the complementary region
are shown separately. At weak current and near the twin
boundary, the six narrow peaks centered on 45° 4+ n60°
show hexatic symmetry aligned with the twin bound-
ary. Away from the twin boundary, competing peaks at
30° +n60° reflect the influence of the sample edges in es-
tablishing the close-packed directions. The order param-
eter reflects this angular shift in its phase, which gives
the orientation of the hexatic pattern if the order param-
eter is large. The magnitude of the order parameter in
both regions at weak current indicates significant hexatic



order, somewhat reduced from the reference simulation
without twin boundary where the hexatic orientation is
determined only by the sample edges. At intermediate
current and near the twin boundary, the hexatic order is
severely reduced. Away from the twin boundary, hexatic
order associated with elastic motion sets in, and the hex-
atic pattern aligns with the Lorentz force. The elastic
flow is not fully developed, because of interference by the
twin boundary. The reference simulation shows the or-
der parameter for fully developed elastic flow. At strong
current, the magnitude of the hexatic order parameter is
reduced in both the twinned and untwinned simulations,
because of the appearance of a defect superstructure in
the moving lattice induced by the field gradient of the
transport current [13]. This effect obscures the relatively
perfect elastic flow expected for large driving forces.
The simulations reported here have i1dentified three dy-
namic phases of a vortex solid driven by a Lorentz force
in the presence of correlated disorder: (i) elastic flow,
(ii) correlated plastic flow, and (iii) uncorrelated plastic
flow. Elastic flow is characterized by long-range correla-
tion in the positions and velocities of the vortices and by
the presence of translational periodicity and hexatic ori-
entational order in the moving vortex lattice. It occurs
when the driving Lorentz force is dominant, causing the
vortex velocities to align with its direction. Plastic flow
occurs when the pinning forces compete effectively with
the Lorentz force and the vortex interactions. The vortex
velocities generally do not align with the Lorentz force.
In correlated plastic flow, the pinning forces in the planar
defect dominate the Lorentz force, creating an impene-
trable barrier for vortex motion. The extended nature of
the planar defect is manifest, and the vortex system dis-
plays hexatic symmetry commensurate with the orienta-
tion of the defect plane. There is significant correlation in
the vortex velocities, though the correlation length does
not extend over the whole sample; rather, correlated re-
gions are separated by discontinuities in the direction and
magnitude of the velocity. Correlated plastic flow is me-
diated by weakly interacting dislocations sliding along
the slip planes. In uncorrelated plastic flow, both the
velocity correlation length and the positional correlation
length are shorter than the intervortex spacing. There
is neither translational periodicity nor significant hexatic
orientational symmetry. Uncorrelated plastic flow has its
physical origin in large spatial fluctuations of the relative
strength of the Lorentz and pinning forces. These fluc-
tuations are a general feature of depinning transitions
and appear when the Lorentz force is nearly balanced
by the pinning forces. Uncorrelated plastic flow is also
expected for motion through a field of random disorder,
where the fluctuations arise from the random positioning
of the pin sites, rather than from the strength of the pins.
The identification of symmetry in the plastic and elastic
dynamic response of the vortices enables the distinction
of well-defined dynamic phases and provides a means for

characterizing dynamic phase transitions in moving vor-
tex systems.
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Fig. 1. Delaunay triangulation of the vortex positions at
one time step of the steady-state motion. Solid lines represent
bonds between nearest neighbors. Open circles: vortices with
five neighbors; filled circles: vortices with seven neighbors.
(a) Weak current. (b) Intermediate current.

Fig. 2. Vortex trajectories during the steady-state motion.
(a) Weak current. (b) Intermediate current. (c) Strong cur-
rent. The Lorentz force acts to the right.

Fig. 3. Distribution of bond angles for all pairs of neighbors
at the last time step during the steady-state motion.

Table 1. Normalized magnitude (u) and phase (¢) of the
hexatic bond-orientational order parameter, <e'®’> = ue'?;
¢ has been divided by 6 and taken modulo 60°, to give a bond
direction in the first sextant.

Twinned Untwinned
Near Bndry In Bulk
Current o 1) o 1) o 1)
Weak 0.631 44.2° 0.608 35.4° 0.834 28.9°
Interm. 0.264 13.0° 0.548 2.45° 0.787 3.06°
Strong 0.513 10.2° 0.596 11.7° 0.567 4.53°




